Proton conduction in voltage gated proton channels

Hv1s are ubiquitous highly selective voltage-gated proton channels involved in male fertility, immunology, and the invasiveness of certain forms of breast cancer. The mechanism of proton extrusion in Hv1 is not yet understood, while it constitutes the first step toward the design of high-affinity drugs aimed at this important pharmacological target.

We have explored the details of the conduction mechanism via an integrative approach, using classical and QM/MM molecular dynamics simulations of a monomeric hHv1 model.

Protons localize in three binding sites along the channel lumen, formed by three pairs of conserved negatively charged residues lining the pore. Local rearrangements, involving notably a dihedral transition of a conserved phenylalanine lining the permeation pathway, appear to allow protons to hop from one acidic residue to the next through a bridging water molecule. These results constitute a first attempt at rationalizing hHv1 selectivity for H+ and the role played by a conserved aspartate residue in this process. They pave the way for further quantitative characterization of H+ transport in hHv1.

E Gianti, L Delemotte, ML Klein and V Carnevale, Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1609964114 (2016)

S C van Keulen, E Gianti, V Carnevale, ML Klein, U Rothlisberger and L Delemotte, J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.6b08339 (2016)